
We’re letting you in on a bit of a secret here: math 

and writing are pretty much the same thing. This 

might come as a surprise, but think about it. Like 

writing, math helps us understand the world by 

allowing us to describe the rules it follows and 

explore what would change if we broke those rules. 

In this lesson, students learn how imposing structure 

on writing can inspire them even while constraining 

them. By developing an awareness of mathematical 

structure in life, they will be able to imagine the 

world in a different and exciting new way. Together, 

you’ll create infinite poems using fractals, imagine 

life on a doughnut, and speculate about a universe 

where time goes crazy. Along the way, everyone will 

learn some cool math facts and some helpful writing 

strategies.

SESSION 1: FRACTAL POETRY

In this session, students learn that shapes don’t have to be 

silent, and poetry doesn’t have to be linear, as they write 
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shapes in verse, and verse in shapes.

YOU WILL NEED

Copies of the “Fractal Poetry: A Step-by-Step Guide” handout•

BEFORE YOU START

A Note on the Sections Titled “FOR YOU TO KNOW (AND YOUR STUDENTS TO 

DISCOVER)”

This lesson comes from the published 826 collection STEM to Story. Lessons in the collection cover a 

wide array of science, technology, engineering, and mathematics topics, and we recognize that few 

educators will be comfortable with all of them. The lessons were designed to focus on discovery and 

exploration, so we encourage you to explore and learn alongside your students. To bring you up to 

speed quickly, each lesson from the publication includes a section or sections titled “FOR YOU TO 

KNOW (AND YOUR STUDENTS TO DISCOVER)”, which provides some background on the 

subject at hand. This is to give you a solid foundation before you teach. Because it’s all very 

interesting, this section is also useful at parties, letting you dazzle your fellow guests with your 

knowledge of STEM facts and trivia.

This section is for you—and not the students. You shouldn’t feel like you have to read it, and you 

certainly shouldn’t feel like you have to teach it. If you do choose to teach this material to students, 

we’ve found it’s best not to introduce these ideas or vocabulary words at the beginning of a lesson. As 

a lesson progresses and students are sharing their observations and ideas, it will usually become clear 

that they have discovered many of these concepts for themselves. You can then help them by 

providing labels (the vocabulary words) to hang on the scientific ideas they have already described in 

their observations. As you do this, try to draw on students’ own language in connecting their 
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observations and ideas to the “scientific” language. If, at the end of the lesson, your students haven’t 

learned what they were “supposed” to, resist the urge to give it to them. Their questions and curiosity 

will do a better job of motivating learning over the long term. Waiting is powerful—and you will see 

the results in what your students do and learn.

HOW TO BEGIN (20 MINUTES)

The Lesson Takes Shape

Start by asking students to share their favorite shape and why they like it. A triangle? A rhombus? Will 

someone go wild and choose a dodecagon? Once everyone’s had a chance to voice his or her polygon 

preferences, dive into some meatier topics:

What is math? What does it do, or what is it about? Why do you do math?•

Does math have anything in common with writing? What about creative writing?•

After allowing the students to share their ideas on these questions, offer a definition of math, such as 

the following:

Math is a language in which we can give precise definitions of concepts that would otherwise be hard 

to pin down.

STEP 1 (10 MINUTES)

Multidimensional Math

Your students probably have some idea of what dimensions are. They know that a sheet of paper is 

two-dimensional, or that the planet Earth is three-dimensional. But what about a collection of dots (or 

points, mathematically speaking)—does that have a dimension? In the language of math, it’s possible 

to give a definition of dimension. Then, equipped with that definition, we suddenly have the power to 

make sense of new ideas—we can figure out what dimension that collection of dots has. And we can 

know what four-dimensional means, or one hundred–dimensional, or even one half–dimensional or 
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infinity-dimensional. (Check out this lesson’s “For You to Know” section for some helpful 

explanations related to this concept, as well as a few other mathematical ideas that come up in the 

activities.)

When viewed as a language, mathematics becomes a tool both for describing the world and for 

expanding the scope of our imagination. In this way, it is similar to creative writing. A mathematician, 

like a writer, uses the familiar as a springboard to conceive of new worlds, and gives those worlds 

substance by putting them into language.

STEP 2 (30 MINUTES)

Zooming In

In this session, students will learn about a mathematical object known as a fractal. Before you explain 

exactly what a fractal is, it’s helpful to show a few pictures to spark imagination and curiosity. (There 

are a ton of great images to choose from online; just search for “fractal” and select a handful of eye-

catching examples, ideally looking for ones that clearly illustrate the definition.) You can also show 

students a video. Search online for “fractal zoom,” which will yield some stunning videos of fractals in 

motion.

Allow the students a moment to try to articulate what these images have in common, or, more simply: 

What’s so cool about these pictures and videos? After a short discussion, define the term:

A fractal is a shape that contains a copy of itself inside of itself. If you zoom in on one part of the 

shape and keep zooming in, you’ll eventually see something that looks just like what you started 

with.

We’ve found it’s helpful to return to the images while explaining this concept to students, pointing out 

the smaller copies of the fractal inside the larger shape. There are even examples of fractals in nature, 
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like Romanesco broccoli, where each floret is made up of smaller florets that each look like a whole 

piece of broccoli. Some simple fractals, like the Sierpinski triangle or the Koch snowflake, are easy to 

draw on your own. (We highly recommend that you have students try to draw one or the other; there 

are instructions in the “For You to Know” section of this lesson, so you can teach the students how to 

draw them if time and interest permit.)

We’ve come up with a simple method for turning any shape into a fractal. It will take students fifteen 

minutes the first time, give or take. Here’s the method:

Draw a simple shape.1.

Pick any two points on the perimeter of the shape. Label one of the two points with an X and the 

other point with an O.

2.

Draw a smaller copy of the shape (about half the size of the original one), with its own X and O

 in the same places as on the original shape. But here’s the key: draw it so the X on the smaller 

shape is on top of the O on the original shape. This will probably require you to rotate the smaller 

shape, but that’s good.

3.

Draw an even smaller copy of the shape (about half the size of the previous one), with its O on top 

of the X on the previous shape.

4.

Repeat until the shapes get too small to draw.5.

It’s a bit tricky to explain the procedure in words, but an example should make the idea clear:
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Model the procedure for your students first. Then ask them to try it for themselves with a very simple 

shape to get the hang of the method. If your students have no problems with triangles, circles, or 

hearts, see what they can do with smiley faces, airplanes, or trees! Be sure to leave time for sharing.

STEP 3 (25 MINUTES)

Zooming In

In this session, students will learn about a mathematical object known as a fractal. Before you explain 

exactly what a fractal is, it’s helpful to show a few pictures to spark imagination and curiosity. (There 

are a ton of great images to choose from online; just search for “fractal” and select a handful of eye-

catching examples, ideally looking for ones that clearly illustrate the definition.) You can also show 

students a video. Search online for “fractal zoom,” which will yield some stunning videos of fractals in 

motion.

Allow the students a moment to try to articulate what these images have in common, or, more simply: 

What’s so cool about these pictures and videos? After a short discussion, define the term:

A fractal is a shape that contains a copy of itself inside of itself. If you zoom in on one part of the 

shape and keep zooming in, you’ll eventually see something that looks just like what you started 
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with.

We’ve found it’s helpful to return to the images while explaining this concept to students, pointing out 

the smaller copies of the fractal inside the larger shape. There are even examples of fractals in nature, 

like Romanesco broccoli, where each floret is made up of smaller florets that each look like a whole 

piece of broccoli. Some simple fractals, like the Sierpinski triangle or the Koch snowflake, are easy to 

draw on your own. (We highly recommend that you have students try to draw one or the other; there 

are instructions in the “For You to Know” section of this lesson, so you can teach the students how to 

draw them if time and interest permit.)

We’ve come up with a simple method for turning any shape into a fractal. It will take students fifteen 

minutes the first time, give or take. Here’s the method:

Draw a simple shape.1.

Pick any two points on the perimeter of the shape. Label one of the two points with an X and the 

other point with an O.

2.

Draw a smaller copy of the shape (about half the size of the original one), with its own X and O

 in the same places as on the original shape. But here’s the key: draw it so the X on the smaller 

shape is on top of the O on the original shape. This will probably require you to rotate the smaller 

shape, but that’s good.

3.

Draw an even smaller copy of the shape (about half the size of the previous one), with its O on top 

of the X on the previous shape.

4.

Repeat until the shapes get too small to draw.5.

It’s a bit tricky to explain the procedure in words, but an example should make the idea clear:
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Model the procedure for your students first. Then ask them to try it for themselves with a very simple 

shape to get the hang of the method. If your students have no problems with triangles, circles, or 

hearts, see what they can do with smiley faces, airplanes, or trees! Be sure to leave time for sharing.

STEP 4 (20 MINUTES)

Get That Writing in (a) Shape

With the rest of the handout, you can show your students how to turn their recursive poem into a 

fractal. First (step 2 on the handout), they pick a shape related to the theme or idea of their poem. This 

is going to be the basis for a fractal. They’ll need to draw it a lot of times, so they shouldn’t be afraid 

to keep it very simple. (Of course, don’t discourage ambition.) Students can use the back of the 

handout or a piece of scratch paper to practice drawing their shape until they’ve figured out something 

they like and can draw easily.
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For step 3, students should find a way to arrange their poem inside the shape. It can go through the 

inside or around the edge, in lines or in crazy loops. Here’s how a poem might look if it were arranged 

inside a speech bubble, as imagined by 826michigan student Angela Zhang, age eleven, in her poem 

“Once Upon a Time”:

Insert Graphic [c11uf002.eps]

Finally (step 4 on the handout), students make their shape and poetry into a fractal! To do this, they’ll 

use the procedure you practiced together earlier. First, they will mark the spot where the poem begins 

with an O and the spot where the poem ends with an X. Then, as before, they will make smaller and 

smaller copies of the shape, with the O of each new copy sitting on top of the X of the previous copy. 

In each shape, they will write their poem, so the end of the poem on one shape flows directly into the 

beginning of the poem on the next shape.

STEP 5 (15 MINUTES)

From Beginning to End and Back Again

At the very end of the session, ask everyone to share and marvel at the results.

SESSION 2: LEAVING SPACE AND TIME
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In this session, students will use ideas from mathematics to imagine and write about worlds in which 

space and time behave strangely. The first half of the session will be devoted to space, leaving the 

second half to think about time.

YOU WILL NEED

Modeling clay or the like•

Foil•

Copies of the “Leaving Space and Time” handout•

String, pipe cleaners, or long strips of paper•

BEFORE YOU START

A Note on the Sections Titled “FOR YOU TO KNOW (AND YOUR STUDENTS TO 

DISCOVER)”

This lesson comes from the published 826 collection STEM to Story. Lessons in the collection cover a 

wide array of science, technology, engineering, and mathematics topics, and we recognize that few 

educators will be comfortable with all of them. The lessons were designed to focus on discovery and 

exploration, so we encourage you to explore and learn alongside your students. To bring you up to 

speed quickly, each lesson from the publication includes a section or sections titled “FOR YOU TO 

KNOW (AND YOUR STUDENTS TO DISCOVER)”, which provides some background on the 

subject at hand. This is to give you a solid foundation before you teach. Because it’s all very 

interesting, this section is also useful at parties, letting you dazzle your fellow guests with your 

knowledge of STEM facts and trivia.

This section is for you—and not the students. You shouldn’t feel like you have to read it, and you 
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certainly shouldn’t feel like you have to teach it. If you do choose to teach this material to students, 

we’ve found it’s best not to introduce these ideas or vocabulary words at the beginning of a lesson. As 

a lesson progresses and students are sharing their observations and ideas, it will usually become clear 

that they have discovered many of these concepts for themselves. You can then help them by 

providing labels (the vocabulary words) to hang on the scientific ideas they have already described in 

their observations. As you do this, try to draw on students’ own language in connecting their 

observations and ideas to the “scientific” language. If, at the end of the lesson, your students haven’t 

learned what they were “supposed” to, resist the urge to give it to them. Their questions and curiosity 

will do a better job of motivating learning over the long term. Waiting is powerful—and you will see 

the results in what your students do and learn.

HOW TO BEGIN (30 MINUTES)

Playing with Shapes

For playing with space, the most important mathematical tool is the subject of geometry. Once again, 

start the class by asking students to share their opinions. Ask them:

What is geometry?•

If you think geometry has something to do with shapes … what’s a shape?•

These are hard questions with no single right answer, but one combined definition might be as 

follows:

A shape is a collection of points in space, and geometry is the study of properties of shapes.

For example, some common properties of shapes that a geometer (a mathematician who studies 

geometry) might study are length, area, angle, and dimension.

Mathematicians sometimes talk about shapes as abstract things, like “a circle of radius 2” and 

describe their properties without having any particular circle in front of them. But you can also think 
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about the geometry of the world around you: What is the geometry of our world like?

To get students started, you might note that Earth is a sphere (roughly, but with mountains and 

valleys). Ask students to think about some of the specifics of this geometry, such as the size of that 

sphere (very big), and the dimension of the space we move around in (three, but stuck to a two-

dimensional ground). They might even notice the fact that Earth is a finite thing, whereas outer space 

might very well go on and on forever.

There are many stories about characters who live in worlds whose geometry is very different from 

that of our own. Putting a character in a different sort of space is a way to present him or her with 

challenges (and sometimes, opportunities) that would not occur on Earth. In Antoine de Saint-

Exupéry’s The Little Prince, for example, we learn of a boy who lives on a very small planet, who 

worries that a few trees will overtake the entire surface of his world.

Size is actually a minor difference in geometry; there are much bigger ones. To get students thinking 

about different geometries, give them some modeling clay, and have them make a planet in a fun 

shape. Let them know that some of the craziest math is in the field of topology—a cousin of 

geometry. In topology, a circle and a square are the same thing because, roughly speaking, you can 

stretch and bend one into the shape of the other. However, a doughnut (mathematically called a torus) 

is not the same as a ball; you would have to squish the hole in the middle of the doughnut, and that’s 

not allowed. Topologically you can bend and stretch one shape into another, but you’re not allowed to 

close holes or cut out new ones. (Remember from the first session that definitions and rules are 

important!) Ask your students if they can stretch their shape into a ball—if so, topologically it’s the 

same as the planet Earth. Challenge your students to create a shape that’s topologically different from 

a ball, and then as many topologically different shapes as they can!

Edwin Abbott Abbott’s Flatland (available online) offers another classic example of interesting 

geometry; this late-nineteenth-century novella describes a two-dimensional world where the 

inhabitants are all objects like lines and triangles and squares. Among the many difficulties faced by 
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these two-dimensional inhabitants is the challenge of recognizing each other from afar, because any 

two-dimensional object looks just like a line segment when viewed head-on.

After they wrestle with that for a bit, bring up Vi Hart’s Wind and Mr. Ug. Ask your students what’s 

going on! (The quick answer is that Wind is Mr. Ug! Wind is on a Möbius strip, a special shape that 

has only one side.) It’s fine if they don’t understand; let their curiosity and wonder linger. If they do 

understand that they’re seeing a Möbius strip, you can let them know that there’s another crazy shape 

with only one side, the Klein bottle. It can only exist in four dimensions, and its inside is also its 

outside! 

We’ve discussed a number of examples of weird geometry in fiction, but there’s another great source 

of interesting geometries: video games. The Mario games have some awesome geometry; Super 

Mario Bros. and many of its sequels are great two-dimensional fun, and Super Mario Galaxy and 

Super Mario 3D World have amazing three-dimensional mechanics. (Super Paper Mario actually 

requires switching between 2-D and 3-D views of the world; if you can show a video of this, it’s a 

really great example of how geometry and perspective are connected.) The game Portal shows you 

what might happen if jumping through one point in space suddenly put you at a different point 

somewhere entirely different. Ask students if they can think of other examples of video games (or 

examples from fiction that were missed earlier) in which geometry works differently from the way it 

does in our world.

Speaking of video games, here’s a fun fact students may not have known: Pac-Man actually lives on a 

cylinder rather than a square. To see why, remember that when Pac-Man moves off the left side of the 

screen, he reappears on the right side, and vice versa. This suggests that his world operates as though 

its left side and its right side were glued together. A square with its left and right sides glued together, 

though, is nothing but a cylinder. The same kind of reasoning explains the shape of Asteroids,

an arcade game that takes place on a doughnut. In that game, moving off the left side of the screen 

makes you reappear on the right side, but also, moving off the top of the screen makes you reappear 

at the bottom. So the world of 
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Asteroids is a square with its left and right sides glued together and its top and bottom glued together. 

Try that for yourself (with a very flexible piece of paper or a piece of tinfoil) and you’ll see that you 

get a doughnut-shaped world.

STEP 1 (20 MINUTES)

Playing with Shapes

For playing with space, the most important mathematical tool is the subject of geometry. Once again, 

start the class by asking students to share their opinions. Ask them:

What is geometry?•

If you think geometry has something to do with shapes … what’s a shape?•

These are hard questions with no single right answer, but one combined definition might be as 

follows:

A shape is a collection of points in space, and geometry is the study of properties of shapes.
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For example, some common properties of shapes that a geometer (a mathematician who studies 

geometry) might study are length, area, angle, and dimension.

Mathematicians sometimes talk about shapes as abstract things, like “a circle of radius 2” and 

describe their properties without having any particular circle in front of them. But you can also think 

about the geometry of the world around you: What is the geometry of our world like?

To get students started, you might note that Earth is a sphere (roughly, but with mountains and 

valleys). Ask students to think about some of the specifics of this geometry, such as the size of that 

sphere (very big), and the dimension of the space we move around in (three, but stuck to a two-

dimensional ground). They might even notice the fact that Earth is a finite thing, whereas outer space 

might very well go on and on forever.

There are many stories about characters who live in worlds whose geometry is very different from 

that of our own. Putting a character in a different sort of space is a way to present him or her with 

challenges (and sometimes, opportunities) that would not occur on Earth. In Antoine de Saint-

Exupéry’s The Little Prince, for example, we learn of a boy who lives on a very small planet, who 

worries that a few trees will overtake the entire surface of his world.

Size is actually a minor difference in geometry; there are much bigger ones. To get students thinking 

about different geometries, give them some modeling clay, and have them make a planet in a fun 

shape. Let them know that some of the craziest math is in the field of topology—a cousin of 

geometry. In topology, a circle and a square are the same thing because, roughly speaking, you can 

stretch and bend one into the shape of the other. However, a doughnut (mathematically called a torus) 

is not the same as a ball; you would have to squish the hole in the middle of the doughnut, and that’s 

not allowed. Topologically you can bend and stretch one shape into another, but you’re not allowed to 

close holes or cut out new ones. (Remember from the first session that definitions and rules are 

important!) Ask your students if they can stretch their shape into a ball—if so, topologically it’s the 

same as the planet Earth. Challenge your students to create a shape that’s topologically different from 
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a ball, and then as many topologically different shapes as they can!

Edwin Abbott Abbott’s Flatland (available online) offers another classic example of interesting 

geometry; this late-nineteenth-century novella describes a two-dimensional world where the 

inhabitants are all objects like lines and triangles and squares. Among the many difficulties faced by 

these two-dimensional inhabitants is the challenge of recognizing each other from afar, because any 

two-dimensional object looks just like a line segment when viewed head-on.

After they wrestle with that for a bit, bring up Vi Hart’s Wind and Mr. Ug. Ask your students what’s 

going on! (The quick answer is that Wind is Mr. Ug! Wind is on a Möbius strip, a special shape that 

has only one side.) It’s fine if they don’t understand; let their curiosity and wonder linger. If they do 

understand that they’re seeing a Möbius strip, you can let them know that there’s another crazy shape 

with only one side, the Klein bottle. It can only exist in four dimensions, and its inside is also its 

outside! 

We’ve discussed a number of examples of weird geometry in fiction, but there’s another great source 

of interesting geometries: video games. The Mario games have some awesome geometry; Super 

Mario Bros. and many of its sequels are great two-dimensional fun, and Super Mario Galaxy and 

Super Mario 3D World have amazing three-dimensional mechanics. (Super Paper Mario actually 

requires switching between 2-D and 3-D views of the world; if you can show a video of this, it’s a 

really great example of how geometry and perspective are connected.) The game Portal shows you 

what might happen if jumping through one point in space suddenly put you at a different point 

somewhere entirely different. Ask students if they can think of other examples of video games (or 

examples from fiction that were missed earlier) in which geometry works differently from the way it 

does in our world.

Speaking of video games, here’s a fun fact students may not have known: Pac-Man actually lives on a 

cylinder rather than a square. To see why, remember that when Pac-Man moves off the left side of the 

screen, he reappears on the right side, and vice versa. This suggests that his world operates as though 
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its left side and its right side were glued together. A square with its left and right sides glued together, 

though, is nothing but a cylinder. The same kind of reasoning explains the shape of Asteroids,

an arcade game that takes place on a doughnut. In that game, moving off the left side of the screen 

makes you reappear on the right side, but also, moving off the top of the screen makes you reappear 

at the bottom. So the world of Asteroids is a square with its left and right sides glued together and its 

top and bottom glued together. Try that for yourself (with a very flexible piece of paper or a piece of 

tinfoil) and you’ll see that you get a doughnut-shaped world.

STEP 2 (15 MINUTES)

Playing with Shapes

For playing with space, the most important mathematical tool is the subject of geometry. Once again, 

start the class by asking students to share their opinions. Ask them:

What is geometry?•

If you think geometry has something to do with shapes … what’s a shape?•
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These are hard questions with no single right answer, but one combined definition might be as 

follows:

A shape is a collection of points in space, and geometry is the study of properties of shapes.

For example, some common properties of shapes that a geometer (a mathematician who studies 

geometry) might study are length, area, angle, and dimension.

Mathematicians sometimes talk about shapes as abstract things, like “a circle of radius 2” and 

describe their properties without having any particular circle in front of them. But you can also think 

about the geometry of the world around you: What is the geometry of our world like?

To get students started, you might note that Earth is a sphere (roughly, but with mountains and 

valleys). Ask students to think about some of the specifics of this geometry, such as the size of that 

sphere (very big), and the dimension of the space we move around in (three, but stuck to a two-

dimensional ground). They might even notice the fact that Earth is a finite thing, whereas outer space 

might very well go on and on forever.

There are many stories about characters who live in worlds whose geometry is very different from 

that of our own. Putting a character in a different sort of space is a way to present him or her with 

challenges (and sometimes, opportunities) that would not occur on Earth. In Antoine de Saint-

Exupéry’s The Little Prince, for example, we learn of a boy who lives on a very small planet, who 

worries that a few trees will overtake the entire surface of his world.

Size is actually a minor difference in geometry; there are much bigger ones. To get students thinking 

about different geometries, give them some modeling clay, and have them make a planet in a fun 

shape. Let them know that some of the craziest math is in the field of topology—a cousin of 

geometry. In topology, a circle and a square are the same thing because, roughly speaking, you can 

stretch and bend one into the shape of the other. However, a doughnut (mathematically called a torus) 

is not the same as a ball; you would have to squish the hole in the middle of the doughnut, and that’s 
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not allowed. Topologically you can bend and stretch one shape into another, but you’re not allowed to 

close holes or cut out new ones. (Remember from the first session that definitions and rules are 

important!) Ask your students if they can stretch their shape into a ball—if so, topologically it’s the 

same as the planet Earth. Challenge your students to create a shape that’s topologically different from 

a ball, and then as many topologically different shapes as they can!

Edwin Abbott Abbott’s Flatland (available online) offers another classic example of interesting 

geometry; this late-nineteenth-century novella describes a two-dimensional world where the 

inhabitants are all objects like lines and triangles and squares. Among the many difficulties faced by 

these two-dimensional inhabitants is the challenge of recognizing each other from afar, because any 

two-dimensional object looks just like a line segment when viewed head-on.

After they wrestle with that for a bit, bring up Vi Hart’s Wind and Mr. Ug. Ask your students what’s 

going on! (The quick answer is that Wind is Mr. Ug! Wind is on a Möbius strip, a special shape that 

has only one side.) It’s fine if they don’t understand; let their curiosity and wonder linger. If they do 

understand that they’re seeing a Möbius strip, you can let them know that there’s another crazy shape 

with only one side, the Klein bottle. It can only exist in four dimensions, and its inside is also its 

outside! 

We’ve discussed a number of examples of weird geometry in fiction, but there’s another great source 

of interesting geometries: video games. The Mario games have some awesome geometry; Super 

Mario Bros. and many of its sequels are great two-dimensional fun, and Super Mario Galaxy and 

Super Mario 3D World have amazing three-dimensional mechanics. (Super Paper Mario actually 

requires switching between 2-D and 3-D views of the world; if you can show a video of this, it’s a 

really great example of how geometry and perspective are connected.) The game Portal shows you 

what might happen if jumping through one point in space suddenly put you at a different point 

somewhere entirely different. Ask students if they can think of other examples of video games (or 
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examples from fiction that were missed earlier) in which geometry works differently from the way it 

does in our world.

Speaking of video games, here’s a fun fact students may not have known: Pac-Man actually lives on a 

cylinder rather than a square. To see why, remember that when Pac-Man moves off the left side of the 

screen, he reappears on the right side, and vice versa. This suggests that his world operates as though 

its left side and its right side were glued together. A square with its left and right sides glued together, 

though, is nothing but a cylinder. The same kind of reasoning explains the shape of Asteroids,

an arcade game that takes place on a doughnut. In that game, moving off the left side of the screen 

makes you reappear on the right side, but also, moving off the top of the screen makes you reappear 

at the bottom. So the world of Asteroids is a square with its left and right sides glued together and its 

top and bottom glued together. Try that for yourself (with a very flexible piece of paper or a piece of 

tinfoil) and you’ll see that you get a doughnut-shaped world.

STEP 3 (20 MINUTES)

Time and Space to Write and Reflect

Now, ask students to pick one or both of the two ideas generated earlier on their handout, about a 
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different kind of space or time, and flesh out as much of a story as possible, using the third part of the 

handout. Try to save enough time—five or ten minutes—to allow a few of your students to share 

some of their work aloud.

To end, after students have shared, conclude the lesson by revisiting the question with which the 

lesson began, What is math? Ask students whether their answer to this question changed over the 

course of the two sessions.

We think math is awesome. Students often think of math as a collection of facts and methods for 

solving math problems. Formulas are extremely important for you to be able to understand and use, 

but there’s so much more to math! The formulas and methods students learn in class have not always 

been known by human beings. They are the fruits of countless hours of labor by people trying to 

figure out how the world works, in many cases thousands of years ago. These people imagined the 

world in tons of different ways until they stumbled on the right rules to describe it (and many other 

worlds besides). And mathematicians are still learning more all the time!

By studying math, we can learn to think logically about the world, to use reason and imagination to 

understand something in a completely original way. How cool is that?

FOR YOU TO KNOW (AND YOUR STUDENTS TO DISCOVER)

Here is some more information on a few of the mathematical ideas that arise in the lesson, in case 

you’d like to know more before discussing them with students.

Dimension

Dimension, roughly, refers to the number of degrees of freedom one has when moving about a 
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geometric object. For example, a flat plane is two-dimensional because motion on it can occur in 

two basic directions: horizontally or vertically. The space we live in, in contrast, is three-

dimensional because motion can occur forward and backward, left and right, or up and down. A 

four-dimensional universe would be one in which movement was possible in four different 

directions, which, of course, is nearly impossible to visualize.

It is slightly more difficult to understand the dimension of a geometric object that isn’t as basic as 

the two- or three-dimensional spaces we’re familiar with, but the trick is to imagine the 

perspective of a tiny person living on the object. When viewed up close in this way, almost any 

shape you can think of looks very simple. The surface of a sphere, for instance, is a two-

dimensional object. To see why this is the case, pretend you are a tiny person living on the sphere; 

that shouldn’t be hard, because we live on a very big sphere ourselves: Earth. From your point of 

view on the sphere, it looks just like a flat plane, and this is why we consider the sphere to be two-

dimensional. For another example, a squiggly line is one-dimensional, because it looks just like a 

regular old straight line from the perspective of a really small person standing on it.

Using these ideas, one can make sense of what a four-dimensional or five-dimensional or hundred-

dimensional object might look like, but what would it mean to say the dimension of a shape is 

something weird like ? Fractals have fractional dimension. To see why, we’ll need to think of 

dimension a bit differently.

Dimension dictates how the size of a shape changes when its side length doubles. Consider, on the 

one hand, the two-dimensional square. If the square has side length 1, its area is 1, whereas if it 

has side length 2, its area is 4. That is, doubling the side length yields a square that is four times 

the size of the original one. Cubes, on the other hand, are three-dimensional, and doubling the side 

length of a cube gives a new cube that’s eight times larger. If you could visualize the four-
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dimensional analogue of a cube (which is called a tesseract), you’d see that when its side length is 

doubled, the resulting object is sixteen times the size of what you started with. To summarize in 

somewhat more mathematical terms: if doubling the side length of an object yields an object 2d 

times as large, then that object has dimension d.

To see why fractals have fractional dimensions, let’s play with a relatively simple one: the 

Sierpinski triangle (see the first figure in this section). First, draw a triangle of side length 1 and 

subdivide it into a Sierpinski triangle by the procedure described in the “Fractals” section that 

follows. Then, do the same, but starting with a triangle with side length 2:

The larger Sierpinski triangle contains three copies of the smaller one. In other words, doubling 

the side length gives an object three times the size of the original.

This is bizarre, because we would expect the size to increase by a power of 2; remember, if the 

size increases by a factor of 2d, then the dimension is d. But 3 is a power of 2, it’s just a really 

weird one: you can check on a calculator that 21.58 ? 3. The conclusion, then, is that the 

dimension of the Sierpinski triangle is approximately 1.58.

Fractals

Two examples of fractals that are easy to draw are the Sierpinski triangle and the Koch snowflake. 
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They both have good Wikipedia pages, so you can go there to get a better idea of what they look 

like.

To draw a Sierpinski triangle, start with a triangle of any size. Subdivide it into a stack of three 

triangles like so:

Then, take each of the three triangles in the stack and subdivide them in the same way:

Repeat with each of the nine triangles that result, and so on.

The Koch snowflake also starts with a triangle. In the middle of each of its edges, draw a smaller 

triangle jutting out:
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Then draw an even smaller triangle jutting out of each edge of the resulting shape:

Repeat forever. Which brings us to …

Recursion

As mentioned in the lesson, recursion occurs when something feeds back into itself. An example 

would be two identical mirrors positioned exactly across from each other, reflecting each other 

into infinity. Another example would be the box of cocoa that depicts a model holding the same 

box of cocoa, and so on, and so on. Fractals are also recursive; when you zoom in, you’re led back 

where you started.

Topology

We’ll say it: topology is crazy (cool), if a little mind blowing. Topology is similar to geometry, 
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only geometry looks at rigid things (angles, lengths, area, volume, and so on), whereas topology 

looks at things that can be stretched, twisted, bent, and squeezed—but not torn.

For an example, think of a coffee cup and a doughnut. If you make the cup’s handle fatter and its 

bottom thicker, eventually it would look like a doughnut. And although it would be different in 

some ways, in others, it would be the same—for instance, it would still have a path, or a “tour,” 

around the hole in the middle.

On a sphere, any tour that returns to its starting point can be retraced with shorter and shorter 

ones, until it shrinks to a point. But on the cup/doughnut, the tour around the hole is 

“noncontractible”—if you try to shorten it, you’ll get stuck at some point, when it goes around the 

hole as tightly as possible.

You can also think of a tour as a closed loop; so a tour on a sphere divides it into a section inside 

the tour, and a section outside the tour (although you’re free to decide which is which!). But the 

tour around the hole or handle of the cup/doughnut doesn’t divide the surface into two parts—you 

can get from one side to the other without crossing it.

These sorts of things are topological properties: they stay the same as long as we don’t cut the 

object, or punch new holes, or fill an existing hole in all the way.

One of the most important results in recent mathematical history in regard to topology was Grigori 

Perelman’s proof of a nearly century-old problem—the Poincaré conjecture, which is about what 

three-dimensional shapes are the same as other three-dimensional shapes. The proof involved 

something called a “Ricci flow with surgery.”
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Fun facts aside, it’ll be more helpful for you to know a couple of cool world shapes used in 

science fiction. One of them, which we just discussed, is the torus (doughnut)—it features 

prominently in Larry Niven’s Ringworld and in the Halo series of video games. The other is the 

Dyson sphere—essentially, the inside of a hollow surface surrounding a star—which was featured 

perhaps most prominently in an episode of Star Trek: The Next Generation.

The torus is definitely not the same topological shape as our world, remember, because there are 

two tours that cannot be shrunk to a point, and because there are tours that don’t divide the torus 

in two. However, the inside of a sphere is the exact same thing, topologically, as the 

outside—mathematicians have found ways to turn spheres inside out.

Time Travel and Paradoxes

Some people hypothesize that time travel is impossible because we haven’t seen any evidence of 

it. Now, absence of evidence is not evidence of absence, but time travel does have its problems. A 

lot of these come down to paradoxes—apparent contradictions. Many of these paradoxes follow a 

particular pattern:

1. Time travel into the past.

2. Change things in the past.

3. Prevent yourself from being born.

4. Prevent step 1 from happening (because if you’re not born, you can’t time travel into the past).

Rather grimly, one of the canonical examples of a time travel paradox is the grandfather paradox, 

where step 2 in the preceding pattern involves killing your grandfather. You absolutely don’t need 

to share this with your students. A friendlier example comes from Back to the Future, in which 

Marty McFly accidentally prevents his mother from falling in love with his father, and he needs to 

© 826 DIGITAL 2018 27



fix the situation to ensure he’ll be born.

Scientists and the like have hypothesized many ways to resolve these paradoxes, including 

parallel universes.

Time Travel and Relativity

Think about yourself standing, and think about what it’s like for someone to zoom past you on a 

bike. That person seems fast. But if you’re biking alongside the other person, she suddenly 

doesn’t seem so fast, right?

So speed is relative, and it is for everything in the universe except one thing: light (generally 

speaking—this also includes other kinds of electromagnetic radiation). So, no matter how fast you 

go, light always goes at the ultimate speed, about 186,000 miles per second.

The consequences of speed’s relativity are really, really cool. When you work out the math, you 

find that the faster you go, the slower time goes for you relative to anyone else who isn’t moving 

very fast. The thing is, you have to be going very, very fast for time to slow down a lot. So far, 

experiments we’ve done have only been able to have fast clocks run fractions of a second slower 

than stationary clocks.

What does this mean for time travel? Some think that we can get time to slow down so much that 

it goes backward—the problem is, it means we have to figure out how to go faster than light.

STEP 4 (35 MINUTES)

Time and Space to Write and Reflect

Now, ask students to pick one or both of the two ideas generated earlier on their handout, about a 

© 826 DIGITAL 2018 28



different kind of space or time, and flesh out as much of a story as possible, using the third part of the 

handout. Try to save enough time—five or ten minutes—to allow a few of your students to share 

some of their work aloud.

To end, after students have shared, conclude the lesson by revisiting the question with which the 

lesson began, What is math? Ask students whether their answer to this question changed over the 

course of the two sessions.

We think math is awesome. Students often think of math as a collection of facts and methods for 

solving math problems. Formulas are extremely important for you to be able to understand and use, 

but there’s so much more to math! The formulas and methods students learn in class have not always 

been known by human beings. They are the fruits of countless hours of labor by people trying to 

figure out how the world works, in many cases thousands of years ago. These people imagined the 

world in tons of different ways until they stumbled on the right rules to describe it (and many other 

worlds besides). And mathematicians are still learning more all the time!

By studying math, we can learn to think logically about the world, to use reason and imagination to 

understand something in a completely original way. How cool is that?

FOR YOU TO KNOW (AND YOUR STUDENTS TO DISCOVER)

Here is some more information on a few of the mathematical ideas that arise in the lesson, in case 

you’d like to know more before discussing them with students.

Dimension

Dimension, roughly, refers to the number of degrees of freedom one has when moving about a 

geometric object. For example, a flat plane is two-dimensional because motion on it can occur in 
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two basic directions: horizontally or vertically. The space we live in, in contrast, is three-

dimensional because motion can occur forward and backward, left and right, or up and down. A 

four-dimensional universe would be one in which movement was possible in four different 

directions, which, of course, is nearly impossible to visualize.

It is slightly more difficult to understand the dimension of a geometric object that isn’t as basic as 

the two- or three-dimensional spaces we’re familiar with, but the trick is to imagine the 

perspective of a tiny person living on the object. When viewed up close in this way, almost any 

shape you can think of looks very simple. The surface of a sphere, for instance, is a two-

dimensional object. To see why this is the case, pretend you are a tiny person living on the sphere; 

that shouldn’t be hard, because we live on a very big sphere ourselves: Earth. From your point of 

view on the sphere, it looks just like a flat plane, and this is why we consider the sphere to be two-

dimensional. For another example, a squiggly line is one-dimensional, because it looks just like a 

regular old straight line from the perspective of a really small person standing on it.

Using these ideas, one can make sense of what a four-dimensional or five-dimensional or hundred-

dimensional object might look like, but what would it mean to say the dimension of a shape is 

something weird like ? Fractals have fractional dimension. To see why, we’ll need to think of 

dimension a bit differently.

Dimension dictates how the size of a shape changes when its side length doubles. Consider, on the 

one hand, the two-dimensional square. If the square has side length 1, its area is 1, whereas if it 

has side length 2, its area is 4. That is, doubling the side length yields a square that is four times 

the size of the original one. Cubes, on the other hand, are three-dimensional, and doubling the side 

length of a cube gives a new cube that’s eight times larger. If you could visualize the four-

dimensional analogue of a cube (which is called a tesseract), you’d see that when its side length is 
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doubled, the resulting object is sixteen times the size of what you started with. To summarize in 

somewhat more mathematical terms: if doubling the side length of an object yields an object 2d 

times as large, then that object has dimension d.

To see why fractals have fractional dimensions, let’s play with a relatively simple one: the 

Sierpinski triangle (see the first figure in this section). First, draw a triangle of side length 1 and 

subdivide it into a Sierpinski triangle by the procedure described in the “Fractals” section that 

follows. Then, do the same, but starting with a triangle with side length 2:

The larger Sierpinski triangle contains three copies of the smaller one. In other words, doubling 

the side length gives an object three times the size of the original.

This is bizarre, because we would expect the size to increase by a power of 2; remember, if the 

size increases by a factor of 2d, then the dimension is d. But 3 is a power of 2, it’s just a really 

weird one: you can check on a calculator that 21.58 ? 3. The conclusion, then, is that the 

dimension of the Sierpinski triangle is approximately 1.58.

Fractals

Two examples of fractals that are easy to draw are the Sierpinski triangle and the Koch snowflake. 

They both have good Wikipedia pages, so you can go there to get a better idea of what they look 

like.
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To draw a Sierpinski triangle, start with a triangle of any size. Subdivide it into a stack of three 

triangles like so:

Then, take each of the three triangles in the stack and subdivide them in the same way:

Repeat with each of the nine triangles that result, and so on.

The Koch snowflake also starts with a triangle. In the middle of each of its edges, draw a smaller 

triangle jutting out:
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Then draw an even smaller triangle jutting out of each edge of the resulting shape:

Repeat forever. Which brings us to …

Recursion

As mentioned in the lesson, recursion occurs when something feeds back into itself. An example 

would be two identical mirrors positioned exactly across from each other, reflecting each other 

into infinity. Another example would be the box of cocoa that depicts a model holding the same 

box of cocoa, and so on, and so on. Fractals are also recursive; when you zoom in, you’re led back 

where you started.

Topology

We’ll say it: topology is crazy (cool), if a little mind blowing. Topology is similar to geometry, 

only geometry looks at rigid things (angles, lengths, area, volume, and so on), whereas topology 

looks at things that can be stretched, twisted, bent, and squeezed—but not torn.

For an example, think of a coffee cup and a doughnut. If you make the cup’s handle fatter and its 

bottom thicker, eventually it would look like a doughnut. And although it would be different in 

some ways, in others, it would be the same—for instance, it would still have a path, or a “tour,” 

around the hole in the middle.
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On a sphere, any tour that returns to its starting point can be retraced with shorter and shorter 

ones, until it shrinks to a point. But on the cup/doughnut, the tour around the hole is 

“noncontractible”—if you try to shorten it, you’ll get stuck at some point, when it goes around the 

hole as tightly as possible.

You can also think of a tour as a closed loop; so a tour on a sphere divides it into a section inside 

the tour, and a section outside the tour (although you’re free to decide which is which!). But the 

tour around the hole or handle of the cup/doughnut doesn’t divide the surface into two parts—you 

can get from one side to the other without crossing it.

These sorts of things are topological properties: they stay the same as long as we don’t cut the 

object, or punch new holes, or fill an existing hole in all the way.

One of the most important results in recent mathematical history in regard to topology was Grigori 

Perelman’s proof of a nearly century-old problem—the Poincaré conjecture, which is about what 

three-dimensional shapes are the same as other three-dimensional shapes. The proof involved 

something called a “Ricci flow with surgery.”

Fun facts aside, it’ll be more helpful for you to know a couple of cool world shapes used in 

science fiction. One of them, which we just discussed, is the torus (doughnut)—it features 

prominently in Larry Niven’s Ringworld and in the Halo series of video games. The other is the 

Dyson sphere—essentially, the inside of a hollow surface surrounding a star—which was featured 

perhaps most prominently in an episode of Star Trek: The Next Generation.

The torus is definitely not the same topological shape as our world, remember, because there are 

two tours that cannot be shrunk to a point, and because there are tours that don’t divide the torus 

in two. However, the inside of a sphere is the exact same thing, topologically, as the 
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outside—mathematicians have found ways to turn spheres inside out.

Time Travel and Paradoxes

Some people hypothesize that time travel is impossible because we haven’t seen any evidence of 

it. Now, absence of evidence is not evidence of absence, but time travel does have its problems. A 

lot of these come down to paradoxes—apparent contradictions. Many of these paradoxes follow a 

particular pattern:

1. Time travel into the past.

2. Change things in the past.

3. Prevent yourself from being born.

4. Prevent step 1 from happening (because if you’re not born, you can’t time travel into the past).

Rather grimly, one of the canonical examples of a time travel paradox is the grandfather paradox, 

where step 2 in the preceding pattern involves killing your grandfather. You absolutely don’t need 

to share this with your students. A friendlier example comes from Back to the Future, in which 

Marty McFly accidentally prevents his mother from falling in love with his father, and he needs to 

fix the situation to ensure he’ll be born.

Scientists and the like have hypothesized many ways to resolve these paradoxes, including 

parallel universes.

Time Travel and Relativity

Think about yourself standing, and think about what it’s like for someone to zoom past you on a 

bike. That person seems fast. But if you’re biking alongside the other person, she suddenly 

doesn’t seem so fast, right?

So speed is relative, and it is for everything in the universe except one thing: light (generally 

© 826 DIGITAL 2018 35



speaking—this also includes other kinds of electromagnetic radiation). So, no matter how fast you 

go, light always goes at the ultimate speed, about 186,000 miles per second.

The consequences of speed’s relativity are really, really cool. When you work out the math, you 

find that the faster you go, the slower time goes for you relative to anyone else who isn’t moving 

very fast. The thing is, you have to be going very, very fast for time to slow down a lot. So far, 

experiments we’ve done have only been able to have fast clocks run fractions of a second slower 

than stationary clocks.

What does this mean for time travel? Some think that we can get time to slow down so much that 

it goes backward—the problem is, it means we have to figure out how to go faster than light.
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